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Graphs and the quantization of the Gel’fand-Y aglom 
equations for higher spin 

w cox 
Department of Mathematics, Liverpool Polytechnic, Liverpool L3 3AF. U K  

Received 19 November 1973 

Abstract. We gi\e further details of a graphical approach to the Gel’fand-Yaglom equations 
and their quantization, in the case when repeated representations are not allowed. Graphs 
associated with the s blocks of Lo are used in their construction, in writing down their 
characteristic polynomials and the traces required in the quantization conditions. As well 
as being useful as practical procedures, the methods described are more suggestive theoretically 
than the conventional algebraic treatment. As examples we obtain a range of quantizable 
spin-2 theories. In particular we show that i t  is possible to obtain various mass spectra and 
yet still have a quantizable theory. Such multi-mass theories have only been obtained 
previously using repeated representations. Also we prove that the representation 
( -  1, j +  1) Q ( O , j +  1) Q (1. j +  1) must occur in a good quantizable theory with maximum 
spin j # 0. Although we only consider integer spin here, the modifications for half-odd 
integer spin are straightforward. 

1. Introduction 

In a previous paper (Cox 1974) we have introduced a new graphical approach to the 
theory of the Gel’fand-Yaglom equations for higher spin. In our theories we assumed 
that repeated representations of the proper Lorentz group are not used, that the charge 
and energy density for physical states are non-zero and that the mass-spin states are 
non-degenerate. Some theoretical results were obtained and a systematic procedure 
for finding quantizable theories developed. In this paper we give further details of this 
approach, showing how the graphical representation can in practice aid the construction 
and investigation ofthe s blocks of the Lo matrix, and giving some examples of quantizable 
theories to illustrate the methods described. For simplicity we confine ourselves to 
integer spin, although the modifications for half-odd integer spin are straightforward. 

In $ 2 we outline the algorithm for constructing the s blocks from their graphs, which 
are easy to write down. A general spin-2 theory is given as an example. 

In $ 3 we show how the graphs can be used in practice to write down the Characteristic 
polynomials for the s blocks, again with an example. As an illustration of the type bf 
general result suggested by the graphical representation we also prove that for any good 
theory of our general type, the corresponding graph must contain a particular pair of 
branches. 

In $ 4  we review the procedure for finding quantizable theories. We discuss the 
quantizable unique mass theories, which are particularly easy to  deal with and have been 
studied by other authors (Amar and Dozzio 1972a, b, Capri and Shamaly 1971). 

Section 5 contains the illustrative and straightforward spin 0, 1 theories. 
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In 0 6 we study a wide range of spin-2 theories, some exhibiting mass spectra. Such 
multiple-mass Gel'fand-Yaglom theories have only been obtained previously using 
repeated representations (Amar and Dozzio 1972b). We also obtain the unique mass 
spin-2 theories first given by Capri and Shamaly (1971); these cannot be made to exhibit 
mass spectra. 

In 0 7 we briefly discuss the continuation to higher spin and explain our reason for 
believing that good theories of our type are improbable for spin greater than eight. 

2. The construction of the s blocks 

The notation we use is described in Cox (1974) and is basically that of Gel'fand et a1 
(1963). We plot the irreducible representations zi of Yp as points in the ( l o ,  I , )  plane, 
where I,, 1, are both integers for integer spin theories.' Those points corresponding to 
finite representations occupy a fan (the 'Bose fan') in the upper half plane, I ,  > llol. Any 
finite-dimensional field theory without repeated representations will correspond to a 
finite subset of the points in this fan. 

It is convenient to have a standard numbering system for all the representations 
in the Bose fan, and here we take this to be in ascending order from left to right as I ,  
increases. Thus the number of the representation T = (1,. 11) will be i = I: - 1 ,  + I o  + 1 
and we denote the representation by T ~ .  

We now briefly recap the Gel'fand-Yaglom theory for later reference. We consider 
a theory based on a representation W of Y and the usual equation 

(2.1) (LIP + iX)+ = 0. 

In the canonical basis Lo has the form 

where if 5 E ( I , ,  I , )  then s takes the spin values, s = [ I o [ ,  ( I o (  + 1,. . . , I ,  - 1 and m the 
values, m = - s, - (s - I), . . . , s - 1, s. Covariance under PEPp leads to 

c;;s!m? = cy' 6,,# dmm< 

where the C:'' are zero except for 'interlocked' or 'linked' representations for which 
( I ; ,  I ; )  = ( I o *  1, 11) or ( I ; ,  I ; )  = ( I , ,  I ,  2 1). In this case the non-zero C;" are given by: 
Type ( i )  or horizontal linkage ( I ; ,  I ; )  = (I,+ 1, I , )  

c;' = p(s, I0)C"' 

c:'r = p(s, I,)C'" 

CJ'' = p(s, I,)C"' 
cy = p(s, I,)C"' 

Type ( i i )  or vertical linkage ( I ; ,  I ; )  

where the C"', c"' are arbitrary complex numbers, and where p(s, n )  = fJ(s + n + I)@- n)l. 
We also demand that the theory be derivable from a lagrangian and that it be covariant 
to space reflections. Equation (2.1) is derivable from the lagrangian density 
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where the most general non-degenerate invariant hermitian form A in the representation 
space 9 is given by - 

$:A$ = a'?'( - l)["]x:,yf,, (2.5) 
rsm 

where = (xim),  $2 = (y&), [SI denotes the integerpart of s and T' = ( - I , ,  11) is the 
representation conjugate to T .  The a"' satisfy a'' = aT ' and in fact, by a suitable choice 
of canonical basis we can always ensure a''' = f l ,  which we will assume in future. 
L[+(x)]  is invariant, and we only have to demand that i t  be real. This is so if and only if 

L6A = AL, (2.6) 
and this imposes on the C parameters the extra condition 

where 
a T f '  

$5, T ' )  = = - = i 1. 

The further conditions imposed by space reflection covariance depend on the nature 
of the representations T ,  5'. There are three distinct cases: 
(a) T # T '  and T' # T" 

crz' = C't" 

which combined with (2.7) gives 

C"' = S ( T ,  T p .  

(b)  T = T '  and T' # T" 

Because of the self-conjugate representation T ,  there are two inequivalent representations 
of the reflection operator S in this case, and each will lead to different conditions on the 
C"' and possibly to different theories. Effectively the two possibilities can be summarized 
by the condition 

err' = v ( T ) ~ ~ ' ~ ' '  

where q(r)  = f 1 depending on which representation of S is chosen. Combining this 
case with (2.7) gives 

cTr' = ~ ( T ) s ( T ,  

(c)  T = T '  and T' = 5'' 

In this case no further conditions are imposed on the C"', but the different possibilities 
for the reflection operator S can lead to different forms of the theories (eg tensor-psuedo 
tensor forms). In this case (2.7) becomes 

err' = S ( T ,  T ' ) F .  

(a), (b), (c) above give the final conditions on the C parameters such that (2.1) is 
covariant under Y and is derivable from a lagrangian (2.4). We now divide Lo into its 
s blocks 

A, = [C,"'] 
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whose 'elements' are in fact scalar matrices. The representations T which contribute non- 
zero elements to a particular s block will be those corresponding to points in or on the 
rectangle 

I ,  = -s, I ,  = s 

I ,  = s + l ,  I ,  = j + l  

in the Bose fan, where j is the maximum value of s in the representation W. As described 
in Cox (1974) we can construct a linear graph on this subset of points as nodes by 
inserting a directed branch from t i  to T~ if and only if the element C:lri is non-zero. In 
this way we will obtain a subgraph of a lattice type graph which will represent pictorially 
the distribution of the non-zero elements of the s block. Each directed branch of the 
graph can be labelled with the corresponding element of A, .  It is not difficult to see 
what these elements will be from the above summary of the Gel'fand-Yaglom results. 
In practice, the advantage is actually in reversing the procedure to construct the s 
blocks for any particular theory by reference to the graphs. 

First identify those representations in the 's rectangle', and write these in their 
standard order as the row and column indicators for the s block. The s block will then 
appear in triple block diagonal form, according to the I ,  rows of the s block graph. 
That is, the triple diagonal structure reflects the graph structure of rows linked to rows 
above and below. We call these sub-blocks of the s blocks ' p  blocks'. 

The diagonal p blocks correspond to the horizontal linkages along rows, so they 
have zeros everywhere except immediately above and below their diagonal. Bearing in 
mind that horizontal linkages are type (i), and collecting all the conditions on the C"' 
listed earlier, the elements of a particular p block can be obtained from the typical 
diagram of a row in figure 1. In this figure si j  = s ( T ~ ,  tj), vi = v(zi), and Cij = PJ. 
Also, note that because p(s, - r )  = p(s, r - l), the p(s, I,) factors are symmetrical about 
the 1 ,  axis. 

The off-diagonal p blocks correspond to vertical linkages between rows, and so only 
the diagonal elements can be non-zero. The p blocks above/below the diagonal of the 
s blocks correspond to branches directed upwards/downwards. Summarizing the 

I" 
Figure 1. The graphs of typical type (i) (horizontal) linkages, the branches corresponding 
to the elements indicated. 
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conditions on the C"' parameters, the off-diagonal p blocks can be constructed from the 
typical picture shown in figure 2. Note that in each of the off-diagonal p blocks, the 
p(s, 11) factor can be taken out as a common factor. 

Figure 2. The graphs of typical type (ii) (vertical) linkages, the branches corresponding to 
elements indicated. 

Further details of the construction of the s blocks from the graph can be found in 
Cox (1972). It is really nothing more than a diagrammatic representation of the 
Gel'fand-Yaglom results. In figures 1 and 2 note the obvious relation between elements 
corresponding to a branch and its (a) mirror image in the I ,  axis-this is space reflection 
covariance, (b) opposite-this is a real lagrangian origin plus space reflection. 

We now consider an example, based on a general representation 9 of 9 in which no 
s value higher than two can occur, see figure 3. This should be sufficient to explain the 

-4 -3 -2 -I 0 I 2 3 4 9 

4 
Figure 3. The subset of points corresponding to the representation 2 for a general maximum 
spin-2 theory. 
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method. The 0 block, 1 block, 2 block graphs are shown in figure 4 and respectively 
furnish us with the s block matrices : 

0 block 
1 3 7 

0 

J6s37c37 

1 block 
2 

0 

0 

8 1  O 
2 block 

3 4 6 7 8 

J 2 ' 2 3  0 2c26 0 0 

J 2 s 2 3 c 2 3  0 2c3 7 0 

0 0 0 J 2 ' 6  7 0 

J213 '2 3 0 0 0 2c26 

2s37c37 J2q7s67c67  J2s67c67 

0 2s 2 6 '2 6 0 J 2 q 7 ' 6 7  0 

5 6 7 8 9 

J 

"2, '2, 

( a )  s=o 

( c )  s = 2  

Figure 4. The s block graphs for the maximum spin-2 theory. 
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3. The characteristic polynomials of the s blocks 

For our theories, with charge and energy density non-zero, and with non-degenerate 
mass-spin spectra, the characteristic and minimal polynomials of an n x n s block have 
the form 

k 
As(f) = t n - 2 k  n (t2-m,Z) 

i = l  

k 
m(t) = tq  n ( t 2  -m:) n - 2 k  2 q 2 1 

i =  1 

respectively where the mi are all real and distinct (Cox 1974). Thus, an n x n s block A,  
has characteristic polynomial 

if n odd 
if n even (3.3) 

where P, and Pz are polynomials. We now outline a graphical algorithm for constructing 
the A,(t), which allows us to take advantage of the simple form of the s block graphs. 
The justification for the method is in the graph theoretical proof of (3.3) (Cox 1974). 
The method is, for small s blocks, quicker than direct determinantal expansion and we 
think is more suggestive from a theoretical point of view-it encourages us to use the 
graphs as a visual aid when investigating the s blocks. 

Let G be any s block graph with n nodes and A(G) the corresponding n x n s block 
matrix. The method for finding A(-[) = JA(G)-tZl consists of writing down all the 
contributions to the coefficient of ( -  t)’ for each of the necessary values of r ,  taking into 
account the general form of A( - t )  given in (3.3). Each possible combination of r nodes 
is inspected-these correspond to the terms containing ( -  t)’ in the expansion of 
)A(G)-tll-and the graph is searched for sets of disjoint loops not including these 
particular r nodes. If for some particular combination of r nodes, there is no such set of 
loops having a total of n - Y nodes, then the contribution of that particular combination 
of nodes to the term ( -cy is zero. Otherwise the factors corresponding to the sets of 
disjoint loops are written down as contributions to the coefficient of( - t)’. This contribu- 
tion will in fact be the product of all the s block elements corresponding to the branches 
contained in the set of disjoint loops, multiplied by ( -  1)’ where 1 is the number of disjoint 
loops comprising the loop set. 

To illustrate this procedure we will use the graph of the 1 block of the previous section 
(figure 4) to construct the Al(t) for that spin-2 theory. We know from (3.3) that 

Al(  - t )  = (- t ) 6+  C,( - t )4  + C,( - t ) 2  + CO 

and we have to find the coefficients Ci by the above procedure. 

C, and C,. There are 15 possible pairs of nodes and 15 possible sets of four nodes. 
These two sets, complements of each other with respect to the set (2,3,4,6,7,8), are 
conveniently tabulated together. Table 1 shows the node sets together with their 
contributions to the coefficients C,, C4, obtained by inspection of the graph. 
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Table 1. 

C2 c, 
Nodes Terms Nodes Terms 

4678 
3678 
3478 

3468 
3467 
2678 
2478 
2468 
2467 
2378 
2368 
2367 

2348 
2347 
2346 

~~~ 

23 
24 
26 

21 
28 
34 

37 
38 
46 
41 
48 

67 
68 
78 

Co. This is the sum of all terms corresponding to sets of disjoint loops containing a 
total of six branches. By inspection of the graph in figure 4 we find the following loop 
sets, with the signs indicated: 

(26)(3784) + (26)(7348) +(48)(3762) +(48)(7326)- (26)(37)(48)- (48)(67)(23) 

- (26)(78)(34) - (234876) - (326784). 

Inserting the corresponding elements and simplifying gives Co. We find 

c4 = - 4 ( q 3 s 2 3 P 2 3 + 2 s 2 6 P 2 6 + s 3 7 P 3 7  + i / 7 s 6 7 P 6 7 )  

c2 = 16[?7s26s67P26P67 +2s26s37P26P37 + q71/3s23s67P2 3 P 6 7  +P:6 +?3'2 3'26P23P26 

- ( q 3  q 7 b 2 3 S 3 7 R I  

= 32P26[2(q3 + q 7 ) S 6 7 R - 2 S 3 7 P 2 6 P 3 7  - ( q 3 7 7  + 1)s37P23P671,  

where p i j  = JCij12 and R = R e ( C ~ ~ C ~ ~ ~ ~ ~ C ~ ~ ) .  Also, we have used the fact that 
S i k S k j  = S i e S e j .  

Notice the simple general result that for an n x n s block the coefficient of t " - 2  in 
A,(t) is minus one times the sum of the terms corresponding to all the 2-loops of the 
s block graph. 

We now prove a result concerning the graph of the j  block where j is the maximum 
spin representation occurring in the theory ( j  # 0). Suppose that the j block graph, G, 
has the typical form shown in figure 5, ie the 'top-row' of the representation 9 has gaps 



Graphs and the Gel’jand-Yaglom equations 673 

Figure 5. A disconnected ,j-block graph. 

in it. The A block will then be reducible and take the form 

where, by the results of $ 2  : 

4 G 3 )  = AT(Gl )  

and so A ( G , )  and A ( G 3 )  have the same characteristic polynomials, AI([) say. If the 
characteristic polynomial of A ( G , )  is A2(t) then that of A ( G )  will be 

A([) = A:(t)A,(t). 

For our theories A(t )  must have no repeated non-zero roots and so all of the roots of A,([) 
must be zero and the non-zero eigenvalues of A(G)  must come solely from A,([), ie from 
G,. I n  particular, if G, consists of a single node, then A,([) has only zero roots and so 
A(G)  has all zero eigenvalues and there is no sp in j  state. This can only be avoided by 
ensuring that the j block graph is connected across the 1 ,  axis, although there may be gaps 
elsewhere in the j block. In terms of representations, a field theory with a state of 
maximum spin j # 0, non-degenerate mass-spin states and non-zero charge and energy 
densities must contain the linked representations ( -  l , j +  l), (O, j+  l), (1, j +  1). 

The above result shows how we can restrict the forms of graph which can give good 
theories, and this limits the number of possibilities we have to consider when looking 
for such theories. Even if the above linkage is present this does not of course imply a 
good theory. In fact, by extending the above argument, we can eliminate an entire range 
of graphs-those which have a particular type of ‘hole’ in them. We will pursue this 
elsewhere. Having obtained the characteristic polynomial, A([), we choose the q, s, C 
parameters to give it the exact form we require, using these parameters to fix the 
coefficients. In this way we impose the mass-spin spectra we require. I t  may happen 
that insufficient arbitrary parameters exist to do this, in which case the particular 
representation 9 cannot support that particular mass-spin spectrum. 
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4. The condition for a quantizable theory 

We look for quantizable theories using the following procedure (Cox 1974). Let A be 
any s block of the theory with characteristic polynomial of the form (3.1). If possible 
we now choose the remaining arbitrary parameters such that A satisfies a polynomial 
equation of the form : 

k 

f(A) = AP n ( A 2  -mf)  = 0 
i =  1 

where p is open to choice. f(A) need not necessarily be the minimal polynomial of A .  
Different values of p may lead to different possible theories. The theory will be quan- 
tizable if and only if (subject to convention) for each such s block having non-zero 
eigenvalues : 

if p odd 

sgn(T(p+ 1)) = ( -  l)kr (4.1) 

sgn(T(p)) = (-  Ukr (4.2) 

if p even 

for each r = 1,. . . , k where 

(4.3) 

and k, is the number of mi > m,. In T,(x), A, is of course the s block of A, ie the restriction 
of A to the s subspace. If there is just one pair of non-zero eigenvalues for a particular 
s block then kr should be taken as zero to obtain the appropriate conditions. If no 
s block in the theory is allowed to have more than two non-zero eigenvalues, then the 
trace conditions take on the simpler form Tr(A,A') > 0 for each s block with non-zero 
eigenvalues. In this paper these are the only types of theory we consider, as the algebra 
for these is difficult enough, without the added complication of multiple masses with the 
same spin. The calculation of Tr(A,A') can be facilitated by noting that the coefficient 
of (A& in this trace is just the sum of the terms corresponding to all paths of length I 
from the representation 7 to the representation T. For small s blocks and small I and 
with some practice this provides a very quick way of writing out Tr(A,A'), and again is 
theoretically suggestive (Cox 1974). 

One type of theory which is easily dealt with and has received much attention in the 
past is that of unique mass. In this case exactly one s block A j  must have a single pair of 
non-zero eigenvalues, the remaining s blocks being nilpotent. Only one trace condition 
has to be satisfied and in fact this is always possible by convention, since A is arbitrary 
up to a real multiplying factor. So in this type of theory all we have to do is ensure that 
the necessary characteristic polynomials are satisfied for each s block and our theory 
will be automatically quantizable. This is the basis of Capri's method. Capri and 
Shamaly (1971) start with the spinor representation of Lo originally obtained by Bhabha 
(1945) and use Wild's transformation (Wild 1947) to obtain what is effectively the 
canonical representation of Gel'fand and Yaglom. They then make all s blocks except 
one nilpotent and use the Umezawa-Visconti relation (Umezawa and Visconti 1956) 
on this s block to ensure unique mass. In actual fact it is unnecessary to insist on the 
Umezawa-Visconti relation, which has recently been proved incorrect (Glass 197 1). 
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Provided the required s block satisfies a polynomial which divides its characteristic 
polynomial we will get a good quantizable theory-with non-zero charge and energy 
density. 

A particular case of the unique mass theory, discussed by Amar and Dozzio (1972a, b) 
is that where the non-nilpotent s block is required to be diagonalizable, ie its minimal 
polynomial is 

m(t)  = t ( t 2 - m 2 )  (4.4) 
the trace condition then becomes Tr(AA2) > 0 and this, with (4.4) implies @+AA2@ > 0 
for our theories, where @ is arbitrary. It is this condition which Amar and Dozzio use 
to obtain the restricted form of the graphs from which such unique mass theories can be 
drawn. 

5. Spin-0 and spin-1 theories 

We only consider the simplest of spin-0 and spin-I theories, using the representation 
(0, 1) 0 ( -  1,2) 0 (0,2) 0 (1,2) depicted in figure 6. Many more complicated theories 
are possible, for example those of Capri and Shamaly (1971), which may easily be checked. 
All we want here is a simple illustration of our approach. From figure 6 we find 

0 block 

with Ao(t) = t2-2sl3pl3, giving s13 = + I  for real mass, x/J21C131. We now apply 
the results of 5 4, noting that there is only one non-trivial choice for the minimal poly- 
nomial of the s block, and so the spin-0 state will be quantizable if 

Tr(Ao) > 0. 

- 2  -I 0 I 2 
10 

Figure 6. The graphs for the simplest spin-0 and spin-I theories. 
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Using the matrix representation of A from (2.5), and s 1 3  = + 1, this is satisfied only if 

a r l r l  = + 1. (5.1) 

1 block 

O I  0 

0 J2'23 

J2qJS23'23 J2s23'23 

0 J2q3'23 

with A,(?) = t(t2-4q3~23p23),  giving q3 = s23 for real mass x/2)C2,1. Again there is only 
one non-trivial choice for the minimal polynomial and the spin-1 state will be quantizable 
if 

We find, 

Tr(A, A:) = ( -  l)'[a'27i(2s2,p23)+ ar3r3(4q3s23p23)+ ~ ~ ~ ~ ~ ( 2 ~ ~ ~ p ~ ~ ) ]  = - 8ar3r3p23,  

on using ~ 3 ~ 2 3  = + 1, from which 

- 1. (5.2) ar3r3 = 

(5.1) and (5.2) show that this representation cannot give a quantizable theory carrying 
both a spin-0 and spin-1 state, because they are incompatible with s13 = + 1, the spin-0 
real mass condition. 

If we settle for just a spin-0 theory, then we must take p23 = 0, which reduces us to 
the theory based on the representation (0, 1) 0 (0,2), which is the usual Duffin-Kemmer 
spin-0 theory. On the other hand, if we want a spin-1 theory, then we must take p I 3  = 0 
and we get a theory based on the representation ( -  1,2) 0 (0,2) 0 (1,2), which is the 
usual spin-1 Duffin-Kemmer theory. 

Tr(h,A:) > 0. 

6. Spin-2 theories 

We consider the general representation of figure 3, and initially assume that none of the 
Cij are zero. The s blocks are given in 0 2, and we study each in turn. 
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From (6.1) this is positive if 

+ 1. = 

(b)  Spin-0 state absent. In this case 

s 1 3 P 1 3 + 3 s 3 7 P 3 7  = 
whence 

s 1 3  = - s 3 ,  and p I 3  = 3 p 3 , .  

677 

(6.2) 

6.2. I block 

The characteristic polynomial Al( t )  was given in 8 3. With our simplicity requirement 
of no more than two non-zero eigenvalues we have : 

(a) spin-1 state present: 

' / 3 r 2 3 + 2 r 2 6 + r 3 7 + 1 ] 7 r 6 7  ' (6.4) 

(6.5) 

r 2 6 [ 2 ( Y / 3 + q 7 ) S 3 7 R - 2 r 2 6 r 3 7  - ( y /3?7  + 1 ) r 2 3 r 6 7 1  = O, (6.6) 
where r i j  = s i j p Y  and we have used SijSkl = S i k S j l ,  etc. Note that in the above equation 
q3 = - q 7  implies p 2 6  = 0 or p 3 7  = 0, which possibilities we exclude at the moment. 
So we have to take q3  = q ,  in the above equation, which simplifies them a little. Thus the 
characteristic polynomial of the 1 block will be 

q 7 r 2 6 r 6 7  + 2 r 2 6 r 3 7 + q 3 q 7 r 2 3 r 6 7 f r : 6 f 1 3 r 2 3 r 2 6 - ( q 3  f q 7 ) S 2 3 S 3 7 R  = 0 

Al(t)  = t4 (r2-m:) .  (6.7) 
The minimal polynomial must then be one of 

m(t) = tr (r2 -mf), 

where 1 < r < 4. Applying the results of $4, we now have two ways of ensuring a 
quantizable spin-1 state : 

(i) ensure that A ,  satisfies 

m(t) = t r ( t 2 - m f ) ,  (6.8) 
where r = 1 or 2 and then take 

Tr(A,Af) > 0. 

Tedious algebra shows that (6.8) is satisfied (with r = 2) if 

P 2 6  = P 2 3  = P 6 7  = P 3 7  

' 2 3  = ' 6 7  

q 3 s 2 3 s 2 6  = - 

c 2 6 c 2 3 + c 3 7 c 6 7  = c 2 6 c 6 7 + c 2 3 c 3 7  = 0 
(6.5) and (6.6) are then satisfied while (6.4) leads to 

(6.10) 

(6.1 1) 

(6.12) 

(6.13) 

s 3 7  = + 1; (6.14) 
we find from the graph, and using (6.10)-(6.14) to simplify the result, that 

Tr(A , A : )  = - 8ar7r7p3 
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so (6.9) gives 

u1717 = - 1 (6.15) 

which with (6.14) implies 

p 3  = - 1. (6.16) 

So, if we choose (6.10H6.16) then we get a good quantizable spin-1 state for the theory. 
Note that since (6.16) conflicts with (6.2), this theory could not contain both a spin-0 and 
a spin-1 state. 

(ii) Allow complete freedom to the minimal polynomial, all we need to demand is 
the characteristic polynomial, and then take 

Tr(AIAf) > 0. (6.17) 

So in this case we only need to satisfy (6.4H6.63, and then choose remaining arbitrary 
parameters such that (6.17) is satisfied. Since the left-hand side of (6.17) is a real ex- 
pression in the q, s, C, we have altogether four real conditions involving four arbitrary 
complex numbers and six arbitrary signs, which can easily be satisfied irrespective of the 
value of urnr3. So with this form of the theory we could quite well have a spin-0 and spin-1 
state together. 

(b) Spin-1 state absent. In this case (6.5), (6.6) must be satisfied and also 

q3r23+2r26+r37+q7r67 = O* (6.18) 

6.3. 2 block 

A2(t) = t[t4-4(2S56P56 + 3r/7s67p67)t2 + 6p56(P56 + 3q7s56s67P67)l. 
As we are interested only in spin-2 theories, we only consider the case where a spin-2 
state is present, so 

2s56P56+3q7s67P67 > 

P56+3q7s56s67P67 = O. 

These give 

s56 = -U7567 = + 1 (6.19) 

P56 = 3P67. (6.20) 

The possible minimal polynomials for the 2 block are 

m(t) = tr(t2 - mi)  
where r = 1,2,3, but the cases r = 1,2 imply p56 = p67 = 0 so we only have to consider 
the case 

m(t) = A2W 

and so only have to demand 

Tr(A2A:) > 0 (6.21) 
along with (6.19) and (6.20). We find, using these that Tr(A2A:) = 48u1717p56p67 which 
results in 

+ 1  (6.22) a1717 = 
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from (6.21). This is compatible with a quantizable spin-0 state, but not with a spin-1 
state of type (i) considered above. However with case (ii) of the 1 block we can have a 
quantizable theory carrying a spin-0, spin-1 and spin-2 state. In this theory, all representa- 
tions indicated in figure 3 are used and none of the Cij are zero. This may not be necessary 
of course. and it is easy to find alternative theories to these. 

For example, omitting the representation T~ and T~ leaves the 0-block and 2-block 
theories unchanged, while the 1-block theory is considerably simplified. The new 
characteristic polynomial for the 1 block will be 

= r 2 [ t 2 - 4 ( S 3 7 P 3 7  + q 7 s 6 7 P 6 7 ) 1  

and for real mass we must have 

% 7 P 3 7  + q 7 s 6 7 P 6 7  ’ O. 
This state will be quantizable if and only if 

Tr(Al.4;) > 0. 

Using the new 1-block graph we find 

Tr(AIA:) = - 4 a r 7 r 7 [ ( S 3 7  + l ) P 3 7  + ( v / 7 s 6 7  + 1 ) P 6 7 1  

from which (6.23) and (6.24) give 

- 1. ar7r7 = 

If the spin-1 state is to be absent from the theory then 

(6.23) 

(6.24) 

s 3 7 P 3 7  + q 7 s 6 7 P 6 7  = O. 

The above results, combined with those given for the 0,2 blocks show that with this 
smaller representation we can satisfy all the conditions for a theory carrying : 

(i) both a spin-0 and spin-2 state, but nat a spin-1 state, 
(ii) only a spin-2 state. 
We can now also easily get the two spin-2 theories studied by Capri and Shamaly 

(1971). These are based on the representations 
(iii) 5 2  @ 5 3  @ 54 @ 7 6  @ f 7  @ ‘58 

(iv) 5 1  @ 5 3  0 5 6  @ 57 @ f g  
and have unique masses. We find that these representations cannot support multi- 
mass theories, because in both cases a quantizable spin-0 state is incompatible with a 
quantizable spin-2 state. 

To summarize; while a complete study of spin-2 theories would be an arduous task, 
we have done sufficient to indicate our method and to show that with a big enough 
representation we can obtain quite general mass-spin spectra, without introducing 
repeated representations. 

7. Higher spin theories-discussion 

We have introduced a new approach to the Gel’fand-Yaglom equations, which simplifies 
and organizes to some extent the search for quantizable higher spin theories. To 
illustrate this we have obtained a number of spin-2 theories, some with multiple mass 
states. These examples also illustrate the great algebraic difficulties of finding higher 
spin theories. Because it is so difficult to  test any particular theory for quantizability, 



680 w cox 

it is important to look for general results which restrict the representations we have to 
consider, such as the result in 0 3, or that of Amar and Dozzio (1972a, b). The graphical 
approach seems admirably suited to this because of the simple visual representations, 
which can be most suggestive. The general problem we have here is really one of using 
the simple structure of a graph to deduce statements about its associated matrix. 

One important result is the conjecture that there are no quantizable theories of our 
type for spin greater than eight. For, assume that we have a general theory for a given 
integer maximum spin j ,  ie all of the representations in the Bose fan up to I ,  = j+  1 are 
allowed (at most once), then by counting branches we find that there are 2j(j+1) 
arbitrary real contents in the theory, at most. We can work out the sizes of the s blocks, 
and using the known general form of the characteristic polynomials Ai(t)  find the number 
of non-zero undetermined coefficients of these polynomials. For example, if j is even 
then the total number of coefficients (which are all real) in all the Ai(t) is f t j ( j +  2)(2j+ 5). 
For a particular theory we have to specify these coefficients, which means that this 
number of conditions has to be satisfied even before we demand quantizability. So 
roughly we could say that a quantizable theory is unlikely if 

ie i f j  > 8. A similar result is obtained by taking j odd. The basic idea is that as the spin 
increases, the number of conditions to be satisfied outstrips the number of available 
arbitrary parameters. It should therefore be possible in principle to catalogue all good 
theories not using repeated representations. 
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